
Multivariate Time Series Analysis:
Brief Review and Recent Developments

Ruey S. Tsay
Booth School of Business

University of Chicago

December 2015

Ruey S. Tsay Booth School of Business University of Chicago Multivariate Time Series Analysis: Brief Review and Recent Developments



Objective

Analysis of multivariate time-series data: finite dimensional case

I Challenges and available models

I Obtaining parsimonious and identifiable models for estimation

I Dimension reduction: Extracting “useful” information when
the dimension is high

I Handling count data

I Modeling multivariate volatility

Purposes: (a) Finding relationships (linear) among variables, (b)
predictions, (c) asset allocations, etc.
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Outline

I Review: multivariate time series analysis

1. Linear models: VAR, VMA, VARMA, Seasonal VARMA, VARX,
Multivariate linear regression with time-series errors, transfer
function models, etc.

2. Unit-root nonstationarity and co-integration

I Dimension reduction: Factor models, PCA, and beyond

1. Many factor models available
2. Exact lagged linear relationship: PCA
3. A motivating example

I Analysis of count data

1. Poisson conditional autoregressive models
2. Simple illustration and applications

I Multivariate volatility

1. What is a volatility matrix?
2. Why is it important?
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Basic concepts

Let Z t = (z1t , . . . , zkt)
′ be a k-dimensional time series observed at

equally spaced time intervals.

I Strong stationarity: distributions are time invariant

I Weak stationarity: first 2 moments are finite & time-invariant.

I Linearity:

Z t = C +
∞∑
i=0

ψiat−i ,

C is a constant vector, ψ0 = I , ψi are k × k real matrices,
{at} are k-dimensional iid noises with mean zero & cov =
Σa > 0.

I Invertibility:

Z t = C +
∞∑
i=1

πizt−i + at ,

where πi are k × k real matrices.
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Parameterization

Consequences of parameterization:

I Why Σa > 0?

I Use Cholesky decomposition: Σa = LΩL′, where Ω is a
diagonal matrix, L is lower triangular with 1 on the diagonal.
Define bt = L−1at . The series can be rewritten as

Z t = C +
∞∑
i=0

ψ∗i bt−i ,

where ψ∗i = ψiL and cov(bt) = Ω is diagonal, and ψ∗0 = L, a
lower triangular matrix with unit diagonal elements.

I The model can also be written as

L−1Z t = C ∗ + bt +
∞∑
i=1

ωibt−i ,

where L−1 is lower triangular and ωi = L−1ψ∗i .
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Available models

Two difficulties encountered in MTS modeling:

1. Too many parameters

2. Model identification: identifiability

Vector autoregressive moving-average (VARMA) model:

φ(B)(Z t − µ) = θ(B)at ,

µ a constant vector, at ∼ N(0,Σa), and

φ(B) = I −
p∑

i=1

φiB
i , θ(B) = I −

q∑
i=1

θiB
i ,

with B denoting the back-shift (or lag) operator
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Identifiability

Two simple examples with k = 2: First,

Z t = at −
[

0 2
0 0

]
at−1 ⇐⇒ Z t −

[
0 −2
0 0

]
Z t−1 = at

That is, VMA(1) = VAR(1). Next,

Z t −
[

0.8 2
0 0

]
Z t−1 = at −

[
0.3 0

0 0

]
at−1

is the same as

Z t −
[

0.8 2 + ω
0 β

]
Z t−1 = at −

[
0.3 ω

0 β

]
at−1,

where ω and β are arbitrary.
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Model continued

Assumptions for block-identifiability:

1. φ(B) and θ(B) are left co-prime: Any common left factor
must be unimodular

2. Rank of [φp,θq] is k.

How to overcome the identifiability problem?

1. Use VAR models

2. Structural specification: finding the hidden model structure

Two issues with using VAR models only:

1. Over-parametrization

2. Difficulty with non-invertible models, i.e. over-differencing.
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Multivariate time series analysis in practice

Reference: Tsay (2014), Multivariate Time Series Analysis with
R and Financial Applications, Wiley.

I An associated R package, called MTS

I Can handle the models discussed
I A illustrative example

1. The quarterly GDP of United Kingdom, Canada, and United
States

2. Sample period: 1980.I to 2011.II
3. Data downloaded from FRED (Federal Reserve Economic

Data). They are also available in MTS by using the command
data(‘‘mts-examples’’,package=‘‘MTS’’)
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Figure: Time plots of the logarithms of quarterly real gross domestic
products of United Kingdom, Canada, and United States from the second
quarter of 1980 to the second quarter of 2011.

Ruey S. Tsay Booth School of Business University of Chicago Multivariate Time Series Analysis: Brief Review and Recent Developments



Analysis GDP growth rates

A general Procedure

1. Preliminary analysis: plot, ccm

2. Order selection: various criteria available

3. Estimation: Gaussian maximum likelihood or OLS

4. Refinement, including Granger causality

5. Model checking

6. Prediction

7. Impulse response functions
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Figure: Time plots of the quarterly growth rates of real gross domestic
products of United Kingdom, Canada, and United States from the second
quarter of 1980 to the second quarter of 2011.
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Figure: Cross-correlation matrices of the quarterly growth rates of real
gross domestic products of United Kingdom, Canada, and United States
from the second quarter of 1980 to the second quarter of 2011.
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Another Example

What is the impact of Chinese economy on world markets?

1. Quarterly China GDP growth rates

2. Quarterly growth rates of crude oil prices: Western Texas
Intermediate

3. Data span: 1994.II to 2015.II

A simple VAR(5) model:

Z t =

[
1.35

0

]
+

[
.707 .0179

4.788 .2818

]
Z t−1 −

[
0 0

5.74 .412

]
Z t−2

+

[
0 0

4.14 0

]
Z t−3 +

[
.296 0

0 −.193

]
Z t−4

−
[
.157 .023
2.82 .166

]
Z t−5 + at , Σ =

[
.627 .259
.259 167.61

]
.
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Figure: Time plots of the quarterly growth rates of Chinese GDP and the
crude oil prices (WTI) from 1994.II to 2015.II
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Figure: Cross-correlations between the quarterly growth rates of China
GDP and WTI.
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Figure: Impulse response functions of a fitted VAR(5) model for the
growth rates of China GDP and WTI.
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Model specification

I VAR models

1. Information criteria: AIC, BIC, and HQ
2. Tiao-Box sequential chi-square statistics: M-stat

I VARMA models

1. ECCM: extended cross-correlation matrices
2. SCM: scalar component models
3. Kronecker index

The last two are for structural specification, resulting in
identifiable models
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Brief descriptions

Consider a k-dimensional series Zt .
ECCM method:

1. Requirement: The model is block identifiable: (a) φ(B) and
θ(B) are left co-prime, i.e. φ(B) = U(B)φ∗(B) and
θ(B) = U(B)θ∗(B), then |U(B)| is a constant. (b)
Rank[φp,θq] = k .

2. Idea: (a) Seek consistent LS estimates of φ(B). (b)
Transform Zt by W t = φ̂(B)Zt . (c) Use cross-correlation
matrices of W t to specify q.

3. Procedure: (a) is achieved by iterated vector autoregressions.
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Illustration

Consider k = 1 and Zt follows Zt = φ1Zt−1 + at − θ1at−1.
The auto-regression

Zt = φ(0)Zt−1 + ε
(0)
t

gives φ(0) = ρ1, which is not φ1. However, the iterated
auto-regression

Zt = φ(1)Zt−1 + βε
(0)
t−1 + ε

(1)
t

gives φ(1) = ρ2/ρ1 = φ1, and

Wt = Zt − φ(1)Zt−1 = at − θ1at−1

is an MA(1) series the ACF of which can be used to identify MA
order 1.
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SCM approach

1. Scalar component model: yt is a SCM of order (r , s) if (a)
yt = v ′0Z t , (b) there exists v1, . . . , v r with v r 6= 0 such that
wt = yt +

∑r
i=1 v

′
iZ t−i is correlated with Z t−s , but not with

(Z t−s−1,Z t−s−2, . . .).

2. Ideas: Seek k linearly independent SCM (pi , qi ) such that
pi + qi are as small as possible. Then, p = max{pi},
q = max{qi}, and can easily identifiable redundant
parameters. For any two SCMs, number of redundant
parameters is δ = min{p1 − p2, q1 − q2}. Tiao and Tsay
(1989, JRSSB).

3. Procedure: Use canonical correlation analysis between some
expanded series of Z t .
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SCM concept

Consider the canonical correlation analysis between

Z t and Zm,t = (Z ′t−1, . . . ,Z
′
t−m)′.

A zero canonical correlation implies a linear combination of Z t

which is not correlated with the first m lags of the past. For
sufficiently large m, this means the linear combination is a white
noise, SCM(0,0). Next, consider

(Z ′t ,Z
′
t−1)′ and Zm,t = (Z ′t−1, . . . ,Z

′
t−m)′.

Zero cano. corre. implies a linear combination of (Z ′t ,Z
′
t−1)′ is

uncorrelated with the past, SCM(1,0).
Complication arises and need to sort them out.
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Kronecker index

1. Define Pt−1 = (Z ′t−1,Z
′
t−2, . . .)

′ and
F t = (Z ′t ,Z

′
t+1,Z

′
t+2, . . .)

′ as the Past and Future vectors.

2. Define the Hankel matrix

H∞ = Cov(F t ,Pt),

which is in the Toeplitz form.

3. Ideas: Rank of H∞, say m, and its first m linearly
independent rows determine the structure of Z t . The result is
an identifiable VARMA(p, p) type of model, where
p = max{ki} with ki being the Kronecker index of zit .

4. Procedure: Approximate Pt by truncation. Use canonical
correlation analysis between Pt and subsets of F t to specify
ki .
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Estimation

I VAR models

1. OLS = GLS
2. MLE
3. Bayesian approach

I VARMA models

1. Conditional MLE
2. Exact MLE

VARMA estimation is time consuming. MTS package needs
upgrade such as using C++.
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Unit-root and co-integration

Idea

1. Unit roots: strong serial dependence (= 1 in theory in all
lags), variance goes to infinity

2. Co-integration: common sources of strong serial correlation

Linear combinations of unit-root series become stationary (without
unit root)
Modeling:

1. Unit root: differencing, e.g. xt = yt − yt−1, i.e. increment

2. Co-integration: Error-correction models

Consequence of improper handling: Leads to non-invertible
models, cannot be approximated by VAR models
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Figure: Time plots of log prices of BHP and VALE stocks: 2002.7 to
2006.12
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Factor models

Studying high-dimensional series: to achieve dimension reduction
and ease in interpretation

Basic model: The orthogonal factor model

x t = Lf t + εt ,

where L is an N ×m loading matrix, f t = (f1t , . . . , fmt)
′ is the

m-dimensional common factors, f t and εt are orthogonal. Cov(εt)
is diagonal. Often, assume Gaussian distribution.

Estimation: Principal component or maximum likelihood method
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Approximate factor models

x t = Lf t + εt

yt+h = β′f t + γ ′w t + vt+h

where x t is an N-dimensional random vector, L is an N × r loading
matrix, f t is the r -dimensional common factors, w t is a
pre-determined vector that may contain lagged values of yt , h > 0
is the forecast horizon, εt and vt are the noise terms, respectively.
Usual assumptions:

I All variables have zero means.
I E (f tf

′
t) = I r .

I E (εtε
′
t) = Ψ (positive definite)

I E (f tε
′
t) = 0, E (f tvt+h) = 0, & E (w tvt+h) = 0.

I Rank(L) = r and 1
NL
′L positive definite as N →∞.

I Additional conditions needed if Ψ is not diagonal, i.e.
bounded eigenvalues.
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Discussions

This is the diffusion index approach of Stock and Watson.
Some difficulties often encountered when N is large:

I Hard to understand or interpret the estimated common
factors.

I Does a large N produce more accurate forecasts? (Not
necessarily so)

I yt plays no role in factor estimation.

I Does not make use of any prior information or theory or past
experience.

Recent research focuses on overcoming these weaknesses.

Ruey S. Tsay Booth School of Business University of Chicago Multivariate Time Series Analysis: Brief Review and Recent Developments



Constrained factor model

H is an N ×m matrix of known constraints. The model becomes

x t = Hωf t + εt

where ω is an m × r matrix, Rank(H) = m and Rank(ω) = r .
Typically, r ≤ m << N. Tsai & Tsay (2010, JASA)

Examples:

I For stock returns, columns of H may indicate the industrial
sectors of the stock.

I For interest rates, columns H may indicate level, slope and
curvature of the yield curve.
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Motivating example

Monthly excess returns of 10 stocks: (less 3-month T bill)

(a) Pharmaceutical: Abbott Labs, Eli Lilly, Merck, and Pfizer

(b) Auto: General Motors and Ford

(c) Oil: BP, Chevron, Royal Dutch, and Exxon-Mobil

Sample period: January 1990 to December 2003 for 168
observations.
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Example continued: traditional factors

Results of traditional PCA using correlations:

I Eig. Values: 3.890, 1.971, 1.498, 0.586, 0.498, ..., 0.242

I first 3 vectors:

abt 0.280 -0.355 0.1196
lly 0.244 -0.463 0.0110
mrk 0.296 -0.432 0.0462
pfe 0.337 -0.337 0.1115
gm 0.249 0.007 -0.6311
f 0.180 0.070 -0.7030
bp 0.351 0.326 0.1977
cvx 0.376 0.346 0.1318
rd 0.411 0.244 0.1366
xom 0.364 0.261 0.0574
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Example continued.

Make use of the knowledge of three industries:

H ′ =

 1 1 1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 1 1 1

 .
Perform a constrained analysis: (least-squares estimates)
Eigen Values:

I Constrained space: 3.813, 1.917, 1.362

I Residual space: 0.660, 0.575, 0.517, ..., 0.256.
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Example continued: Loading matrix

stock Unconstrained Constrained
L Hω

abt 0.551 -0.497 0.141 0.568 -0.556 0.074
lly 0.480 -0.649 0.013 0.568 -0.556 0.074
mrk 0.583 -0.605 0.054 0.568 -0.556 0.074
pfe 0.663 -0.471 0.131 0.568 -0.556 0.074
gm 0.490 0.009 -0.744 0.423 0.071 -0.783
f 0.353 0.098 -0.829 0.423 0.071 -0.783
bp 0.690 0.457 0.233 0.736 0.409 0.168
cvx 0.739 0.485 0.155 0.736 0.409 0.168
rd 0.809 0.342 0.161 0.736 0.409 0.168
xom 0.715 0.365 0.068 0.736 0.409 0.168
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Example continued.

Discussions:

I Constrained model is more parsimonious (10× 3 vs. 3× 3)

I Sector variations explain the variability in the excess returns
(equal loading for stocks in the same industry)

I The spaces spanned by the common factors are essentially the
same with/without constraints
Canonical correlations between the two sets of common
factors are

0.9997, 0.9990, 0.9952.

I Both maximum likelihood and least squares estimations
available

I Test is available for checking the constraints. Tsai and Tsay
(2010, JASA)
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Partially constrained factor models

In practice, it is likely that only partial constraints are available.

x t = Hωf t + Lg t + εt ,

yt+h = β′1f t + β′2g t + vt+h, t = 1, . . . ,T ,

where L is an N × p unconstrained loading matrix of rank p and
g t is a p-dimensional unconstrained common factors.
Additional assumptions:
E (g t) = 0, E (g tg

′
t) = I p, E (f tg

′
t) = 0 and H ′L = 0.

E (g tvt+h) = 0
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Doubly constrained factor models: an extension

Data matrix in the form

Z = F 1ω
′
1H
′ + GF 2ω

′
2 + GF 3ω

′
3H
′ + E ,

where Z is a T × N data matrix, H is the column constraints, G
denotes row constraints, F i are common factors, and ωi are
parameters of the loading matrices.

See Tsai, Tsay, Lin and Cheng (2013) with applications to monthly
U.S. regional housing starts. Needs further study when N →∞.
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Dynamic factor models

Proposed by Forni, Hallin, Lippi, and Reichlin (2000, 2004, 2005)

x t = L(B)ut + εt ,

where L(B) = L0 + L1B + · · ·+ LpB
p is a matrix polynomial, ut is

a white-noise series, εt is defined as before, and ut and εt are
orthogonal.

I Identification

I Hard to estimate

I Deserve further study
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How many common factors?

1. Extensively studied in the literature

2. Is it relevant?

Consider an example

x t =
2

1− 0.8B
ft + εt ,

where ft is a scalar variable. Since

1

1− 0.8B
= 1 + 0.8B + 0.64B2 + 0.83B3 + · · ·

The model becomes

x t = 2ft + 1.6ft−1 + 1.28ft−2 + · · ·+ εt

which has infinite many common factors under the usual
framework of factor model.
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Principal Component Analysis (PCA)

PCA can be applied to the observed series or residuals of a fitted
model.
Example. Consider the 4-dimensional monthly time series
Z t = (z1t , . . . , z4t)

′ of U.S. manufacturers data on durable goods,

1. z1t : New orders (NO),

2. z2t : Total inventory (TI),

3. z3t : Unfilled orders (UO),

4. z4t : Values in shipments (VS),

in billions of U.S. dollars and the data are seasonally adjusted. The
sample period is from February 1992 to July 2012 for 246
observations.
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Figure: Monthly series of U.S. manufacturers data on durable goods from
February 1992 to July 2012: (a) new orders, (b) total inventory, (c)
unfilled orders, and (d) values of shipments. Data are in billions of dollars
and seasonally adjusted.
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Table: Summary of PCA Applied to the Monthly U.S. Manufacturers
Data of Durable Goods From 1992.2 to 2012.7. âp,t denotes the
residuals of a VAR(p) model.

Series Variable Principal Components

Z t Stand. Dev. 197.00 30.700 12.566 3.9317
Proportion 0.9721 0.0236 0.0040 0.0004

â1,t Stand. Dev. 8.8492 3.6874 1.5720 0.3573
Proportion 0.8286 0.1439 0.0261 0.0014

â2,t Stand. Dev. 8.3227 3.5233 1.1910 0.2826
Proportion 0.8327 0.1492 0.0171 0.0010

â3,t Stand. Dev. 8.0984 3.4506 1.0977 0.2739
Proportion 0.8326 0.1512 0.01530 0.0010

â4,t Stand. Dev. 7.8693 3.2794 1.0510 0.2480
Proportion 0.8386 0.1456 0.0140 0.0008
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Table: Loadings of PCA Applied to the Monthly U.S. Manufacturers
Data of Durable Goods, where ts stands for Time Series.

ts Loading matrix ts Loading matrix
Z t 0.10 0.71 0.342 0.604 â1,t 0.79 0.16 0.066 0.583

0.15 0.32 -0.928 0.129 0.06 -0.11 -0.990 0.063
0.98 -0.18 0.098 -0.006 0.55 -0.59 0.060 -0.588
0.10 0.60 0.110 -0.786 0.26 0.78 -0.106 -0.557

â2,t 0.80 0.15 0.017 0.587 â3,t 0.80 0.14 0.009 0.586
0.03 -0.07 -0.997 0.012 0.02 -0.06 -0.998 0.007
0.54 -0.60 0.049 -0.585 0.54 -0.61 0.044 -0.583
0.27 0.78 -0.055 -0.560 0.27 0.78 -0.048 -0.563
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Eigenvectors of the smallest e.v

The eigenvector associated with the 4th can be written as
h4 ≈ (1, 0,−1,−1)′.
Next, the fitted VAR(1) model is

Z t =


0.01
−0.13
−8.35

2.80

+


0.686 −0.027 −0.001 0.357
0.116 0.995 −0.000 −0.102
0.562 −0.023 0.995 −0.441
0.108 0.023 −0.003 0.852

Z t−1+â1,t .

(1)
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Pre-multiplying Equation (1) by h′4, we have

h′4z t ≈ 5.55 + (0.015,−0.027,−0.994,−0.054)z t−1 + h′4â1,t .

The information points to h′4â1,t ≈ 0. (Why?) Consequently, the
prior equation implies

NOt − UOt − VSt + UOt−1 ≈ c4,

where c4 denotes a constant. In other words, PCA of the residuals
of the VAR(1) model reveals a stable relation

NOt − VSt − (UOt − UOt−1) ≈ c4 (2)
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Results continue to hold for higher VAR models.
Consider the VAR(2) model,

Z t = φ̂2,0 + Φ̂2,1Z t−1 + Φ̂2,2Z t−1 + â2,t . (3)

From PCA of the residuals â2,t , the smallest eigenvalue is close to
zero with eigenvector h4 ≈ (1, 0,−1,−1)′.
Pre-multiplying Equation (3) by h′4, we get

h′4Z t ≈ 2.21+(.59,−.08,−1.57,−.61)Z t−1+(.01, .07, .57,−.01)Z t−2.

Consequently, we have

z1t−z3t−z4t−0.59z1,t−1+1.57z3,t−1+0.61z4,t−1−0.57z3,t−2 ≈ c1,

where c1 denotes a constant. Rearranging terms, the prior
equation implies

z1t−z3t−z4t+z3,t−1−(0.59z1,t−1−0.57z3,t−1−0.61z4,t−1+0.57z3,t−2) ≈ c1.

This approximation further simplifies as

(z1t−z3t−z4t +z3,t−1)−0.59(z1,t−1−z3,t−1−z4,t−1 +z3,t−2) ≈ c ,

where c is a constant.
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Table: Summary of the VAR(2) Model for the 4-Dimensional Time Series
of Monthly Manufacturers Data on Durable Goods

Parameter Estimates

φ̂
′
2,0 -0.221 3.248 -6.267 3.839

Φ̂2,1 1.033 1.012 -0.638 -0.108
-0.445 1.549 0.441 0.537
0.307 0.645 1.005 -0.120
0.141 0.452 -0.072 0.619

Φ̂2,2 0.243 -1.028 0.634 -0.115
0.064 -0.568 -0.438 -0.166
0.247 -0.663 -0.010 -0.336

-0.016 -0.440 0.070 0.227
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Models for time series of count data

Two basic categories

1. Parameter driven

2. Observation driven

Consider the trading intensity in high-frequency finance. For
example, the number of trades in 30 seconds of a given asset.

Two references

I Regression Analysis of Count Data by A. C. Cameron and
P.K. Trivedi (2013), 2nd edition, Cambridge Press

I Econometric Analysis of Count Data by R. Winkelmann
(2010), 5th edition, Springer
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Figure: Time series plots of the number of trades of MSFT and JNJ, 30
seconds, October 4 to 15, 2010
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Univariate autoregressive intensity models

Let Ft−1 denote the information available at time t − 1 and yt be
the time series of counts. A simple autoregressive conditional
Poisson model is

yt |Ft−1 ∼ Po(λt)

λi = ω +

p∑
j=1

αjyt−j +

q∑
j=1

βjλt−j

where

Po(λ) =
exp(−λ)λyt

yt !
.

Key features:

E (yt |Ft−1) = Var(yt |Ft−1) = λt .
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Generalizations

1. Negative Binomial (r , p): λ = rp/(1− p) so that

E (yt |Ft−1) = rpt/(1− pt) = λt , Var(yt |Ft−1) = λt + λ2t /r

where pt = λt/(r + λt).

2. Double Poisson of Efron (1986)

yt |Ft−1 ∼ DPo(λt , γ),

where
E (yt |Ft−1) = λt , Var(yt |Ft−1) ≈ λt/γ.
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Use of exogenous variables

To handle the diurnal pattern in HF trading, use

yt |Ft−1 ∼ Po(λt exp(st)),

where

st =
k∑

i=1

θixi ,t ,

with xi ,t being a given function, e.g. indicator or sine (co-sine)
function.

Multivariate generalization: possible with some modifications. See,
for example, Tsay (2014, JSM meeting) with momentum effect.
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Johnson and Johnson trading intensity

1. Sample period: October 4 to October 15, 2010 for 10 trading
days.

2. Time interval: 30 seconds.

3. Sample size: 7800

4. Models entertained: Conditional autoregressive models with
Poisson, Negative binomial, and double Poisson

5. Order: (1,1)

6. Seasonality: indicators of the first 4 and last 4 time intervals.

The model is in the form

ratet = λt exp

(∑
i

θixi ,t

)
,

λt = ω + αyt−1 + βλt−1.
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Figure: Time series plot and ACF of the number of trades of JNJ, 30
seconds, October 4 to 15, 2010
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Estimation results of PCA models: JNJ data

Par Po NB DP

est se est se est se

ω 1.56 0.05 1.11 0.20 2.27 0.29
α 0.12 .002 0.10 .008 0.11 .008
β 0.85 .002 0.88 0.01 0.85 0.01
γ 1.73 0.03 0.039 0.001

θ1 -0.26 0.03 -0.15 0.26 -0.24 0.16
θ2 -0.26 0.03 -0.24 0.24 -0.23 0.16
θ3 -0.18 0.03 -0.10 0.24 -0.16 0.15
θ4 -0.15 0.03 -0.16 0.24 -0.13 0.16
θ5 0.68 0.01 0.69 0.24 0.69 0.10
θ6 0.48 0.02 0.48 0.24 0.49 0.11
θ7 0.51 0.02 0.51 0.24 0.52 0.11
θ8 0.32 0.03 0.31 0.24 0.33 0.13
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Figure: ACF of the residuals and squared residuals of fitted PCA model
with double Poisson innovations, 30 seconds, October 4 to 15, 2010
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Summary of empirical analysis

1. The models fit the data reasonably well

2. The trading intensity has high serial dependence (persistent)

3. Trading is not a Poisson process (over-dispersion)

4. The opening dummies become statistically insignificant when
over-dispersion is entertained. The closing dummies, however,
remain significant.
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How about multivariate analysis?

Some thoughts

1. Limited works available

2. Dynamic factor models for multivariate count data, Jung et
al. (2009, JBES). Use efficient important sampling method.

3. How to model dependence (serial and cross section)?
I Common factor in intensity functions λit
I Common factor in observations

yit = yc,t + · · ·

where yc,t is a latent series common to all individual
components, where yc,t ≤ min{yit}
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Prediction with many predictors

Approaches proposed

1. Diffusion index: generalization of principal component
regression

2. LASSO-family: penalized likelihood approach

3. Partial least squares (PLS)

4. Model-based clustering approach

5. Group diffusion or group PLS
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Predicting the VIX index

VIX index is commonly known as the U.S. fear factor in stock
market. It is the daily volatility index of Chicago Board Options
Exchange.

Problem of interest: long-term forecasts of VIX. Let T be the
forecast origin. Interested in predicting

VT+h,

for h = 60 or 120 (3 month or 6 month ahead)
Data available, including

I Interest rate volatility

I FX volatility

I equity volatility
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Volatility matrix

Let r t = (r1t , . . . , rkt)
′ be the returns of k assets at time t, and Ft

be the public information available at time t.
Assume E (r t |Ft−1) = 0.
Definition: Volatility matrix Σt = Cov(r t |Ft−1), conditional
covariance matrix.

Why is it important?

1. Use it to quantify joint financial risk

2. Needed in asset allocation (portfolio re-balancing)
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Challenges

Difficulties

1. There are k(k + 1)/2 processes of variance and covariances

2. Time-varying

3. Σt must be positive definite almost surely
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Multivariate volatility models

Models available in the MTS package

1. BEKK(1,1) models for k = 2 and 3 ONLY

2. Dynamic conditional correlation (DCC) models of Engle
(2002) and Tse and Tsui (2002)

3. Cholesky decomposition model

4. Some copula models with multivariate Student-t innovations

Other possibilities (not in MTS package):

1. Stochastic volatility models

2. Factor structure
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Remarks on volatility modeling

1. Available models are either highly structured or computational
expensive

2. Some directions of current research

2.1 Use high-frequency, transaction-by-transaction, data
2.2 Use common factors, including independent component

analysis
2.3 Use hyper-spherical coordinates to put parameter constraints
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